Shaping binary metal nanocrystals through epitaxial seeded growth.

نویسندگان

  • Susan E Habas
  • Hyunjoo Lee
  • Velimir Radmilovic
  • Gabor A Somorjai
  • Peidong Yang
چکیده

Morphological control of nanocrystals has become increasingly important, as many of their physical and chemical properties are highly shape dependent. Nanocrystal shape control for both single- and multiple-material systems, however, remains empirical and challenging. New methods need to be explored for the rational synthetic design of heterostructures with controlled morphology. Overgrowth of a different material on well-faceted seeds, for example, allows for the use of the defined seed morphology to control nucleation and growth of the secondary structure. Here, we have used highly faceted cubic Pt seeds to direct the epitaxial overgrowth of a secondary metal. We demonstrate this concept with lattice-matched Pd to produce conformal shape-controlled core-shell particles, and then extend it to lattice-mismatched Au to give anisotropic growth. Seeding with faceted nanocrystals may have significant potential towards the development of shape-controlled heterostructures with defined interfaces.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Shape-selective synthesis of II-VI semiconductor nanowires

Polar II–VI semiconductors can nucleate in complex shapes ranging from nanowires to nanoribbons, nanosaws and multipods. Here we demonstrate the deterministic and fully reproducible shape-selective growth of several morphologies of CdSe and ZnTe nanocrystals by a steady-state vapour transport process. A simple pressure-based precursor-flow shutter excludes any effects of temperature ramping, en...

متن کامل

Colloidal Magnetic Heterostructured Nanocrystals with Asymmetric Topologies: Seeded-Growth Synthetic Routes and Formation Mechanisms

Colloidal inorganic nanocrystals (NCs), free-standing crystalline nanostructures generated and processed in solution phase, represent an important class of advanced nanoscale materials owing to the flexibility with which their physical–chemical properties can be controlled through synthetic tailoring of their compositional, structural, and geometric features and the versatility with which they ...

متن کامل

Template Synthesis of Noble Metal Nanocrystals with Unusual Crystal Structures and Their Catalytic Applications.

Noble metal nanocrystals own high chemical stability, unique plasmonic and distinctive catalytic properties, making them outstanding in many applications. However, their practical applications are limited by their high cost and scarcity on the earth. One promising strategy to solve these problems is to boost their catalytic performance in order to reduce their usage amount. To realize this targ...

متن کامل

Aqueous phase synthesis of upconversion nanocrystals through layer-by-layer epitaxial growth for in vivo X-ray computed tomography.

Lanthanide-doped core-shell upconversion nanocrystals (UCNCs) have tremendous potential for applications in many fields, especially in bio-imaging and medical therapy. As core-shell UCNCs are mostly synthesized in organic solvents, tedious organic-aqueous phase transfer processes are usually needed for their use in bio-applications. Herein, we demonstrate the first example of one-step synthesis...

متن کامل

Ultraviolet detectors based on annealed zinc oxide thin films: epitaxial growth and physical characterizations

In this report, ultraviolet (UV) detectors were fabricated based on zinc oxide thin films. The epitaxial growth of zinc oxide thin films was carried out on bare glass substrate with preferred orientation to (002) plane of wurtzite structure through radio frequency sputtering technique. The structural properties indicated a dominant peak at 2θ=34.28º which was matched with JCPDS reference card N...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Nature materials

دوره 6 9  شماره 

صفحات  -

تاریخ انتشار 2007